Understanding, predicting and mitigating air entrapment defects in pharmaceutical tablet manufacturing

Antonios Zavaliangos
Drexel University Philadelphia, PA

DCED Manufacturing PA Innovation Program Webinar
November 24, 2020
OUTLINE

• About the team
• Pharmaceutical Manufacturing in PA
• Introduction to the problem
• Basic understanding developed and first order results
• Experimental work
• Modeling
• Conclusions
• Work forward
THE TEAM

Joseph Wright
2nd Year PhD Student
Drexel University
BS Physics, 2019
Millersville University of PA

Dr. Antonios Zavaliangos
A.W. Grosvenor Professor of Materials Science and Engineering
Drexel University, PA

Dr. Gerard Klinzing
Principal Scientist
Merck Inc & Co
West Point, PA
Manufacturing in PA (*):

- 11.89% of the total output in PA
- Total output is $94 billion
- Employing 9.47% of the workforce
- ~569,000 manufacturing employees in PA
- Average annual compensation of $73,730

Pharmaceutical and Medicine Manufacturing is the highest growth sector

(*) Data source:
NATIONAL MANUFACTURERS ASSOCIATION
PHARMACEUTICALS

SOLID DOSAGE (tablets, capsules)
LIQUIDS (suspensions, solutions, syrups)
CREAMS
INHALERS/SPRAYS
PATCHES
INJECTIBLES
SUPPOSITORIES

TABLETS = 60-80% OF PHARMACEUTICALS $
• Active Pharmaceutical Ingredients (APIs) and Bulk Excipients constitute volume of pills and compacts.

• Powder compacted within a die to form solid product as shown:
 • Lower punch moves down to make room for powder to feed into die. Excess powder is leveled by scraper.
 • Upper punch is moved to the top of the powder in precompression.
 • Upper punch is moved downward to desired compression depth.
 • The upper punch and then the lower punch are raised to eject the compacted tablet.

DEFECT FORMATION IN TABLETING

CLASSIFICATION IS UNCLEAR
MULTIPLE DEFECTS ARE OFTEN PRESENT
CAUSE AND EFFECT ARE NOT ESTABLISHED

THIS LEADS TO THE NEED OF EXTENSIVE
(NEAR BLIND EXPERIMENTATION)
FOCUS ON AIR ENTAPMENT

- How much air is in there begin with?
- What determines the ease of air escaping?
- How quickly are we forcing the air out?
- How far do we compress the entrapped air
A roadmap towards a predictive capability

• Understand the fundamental phenomenon
• Measure the important properties of the material involved
• Develop preliminary models that will guide the experiments
• Controlled experiment to identify parameters involved
• Develop models that describe all aspects of the problem
• Develop failure criteria
• Validate models and criteria
Worst case scenario: Full entrapment

- If all air is trapped

- If \(\exists \) air above the compact that is ‘pushed’ into the powder

\[
p_{\text{air}} = p_{\text{atm}} \frac{1 - D_0}{1 - D} \frac{D}{D_0}
\]

\[
p_{\text{air}} = \frac{D}{D_0} \frac{1 - D_0 + \beta}{1 - D}
\]

![Figure 3. Air pocket above compact in die compaction.](image)

E.g. Sprayed Dried Amorphous Solid Dispersions

Sprayed Dried Amorphous Solid Dispersions (Courtesy of Merck – Dr. Klinzing)
• High compaction speed pushes towards the full entrapment limit
• The punch-die tolerance is a key parameter that determines how restricted is the flow of air out of the die
Measurement of permeability, K

$$\varphi \vec{v} = -\frac{K}{\mu} \nabla P$$

- $\varphi =$ porosity
- $\vec{v} =$ air velocity
- $\mu =$ air viscosity
- $P =$ air pressure
- $\nabla =$ spatial gradient
• Hexley&Bertram
• A well-designed hydraulic servo-valve forces the response to agree with the command
Works great unless BOTH load and speed are very high - Transient error
• Very high versatility/flexibility in displacement or load profiles
• There is a small transient error that can be evaluated post mortem
• Compaction speed study
• Vivapur 200 + 2%MgSt
• Triangular profile with a varying total time of 30sec, 3sec, and .3 sec from beginning of descent to ejection.
• Defects (bubble and/or lamination) appear to present around .3sec compaction duration, with .15sec compaction defects occur regularly.
Here, the use of tapered dies did not prevent defects.

Operators often pull down the bottom punch to facilitate flow of materials that are difficult to feed.

The result is positive for feeding but it increases the amount of air into the tablet.

- Bubbles appear larger (crack opening and length under the surface), as ΔH increases.

Tablet Placement-Exit Effects

<table>
<thead>
<tr>
<th>ΔH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Precompaction: Induce “enough” pressure by partially densifying the tablet followed by unloading and reloading to final shape.

Complex effects
• Estimated air pressure (double compaction)

 • Maximum pressure found to be in the center (vertically)

 • Location of maximum pressure not the location where bubbles form / air entrapped

 • The need for a local criterion

The role of weakened contacts &
the need for a local criterion

- Modern evaluation of mechanical
 properties requires the consideration of
 cracks
- Cracks = weakened contacts due to
 - Concentrated lubricant
 - Non uniform local contact stress
- Even if the microstructure of the tablet was
 same from point to point (it is not) the local
 strength is NOT the same
• “Octagonal particle” approximation
 • Circular particles would have increasing interparticle contacts as material is compressed but this leads to some ambiguity in pressure application (currently explored)
 • Interparticle contacts “preformed”
 • Air pressure pressure applied easily on octagon side
- Periodic structure
- Uniform pressure approximation
- One or more contacts are considered weakened to the point that air is applied on the previously compacted contact face
The effect on a crack is estimated by:
- the local tensile stress at the tip of a neighboring contact (rough estimate)
- the “crack” opening

Under internal air pressure, a weakened crack opens and induces a tensile stress in the neighboring contacts.
A CRACK NEAR THE FREE SURFACE OF THE TABLET IS WORSE THAN ONE IN THE CENTER UNDER THE SAME INTERNAL PRESSURE.
• A weakened contact is more prone to propagation at the edge of the tablets
• The effect is amplified when more than one neighboring contacts are weakened
• This result indirectly points out to a particle size effect that needs to be examined.
CONCLUSIONS

• A framework for the analysis of the local pressure of entrapped air has been presented
• The approach provides an estimate of local air pressure by taking into account: (a) initial and final relative density, (b) speed of compaction, (c) compact permeability as a function of relative density, (d) the presence of tolerances between punch and die, and (e) any air between tablet and punch and allows to assess risk for entrapped air induced defects
• Experimental approach confirms salient features of the model but predicts maximum pressure at a different position than the area of the air bubble formation
• Microtomography work shows that many times micro and macrocracks normal to the compaction direction are also present together with the formed air bubble
• A crack-based model demonstrates that cracks just under the tablet top surfaces are more susceptible to propagation than those in the center of the tablet under the same pressure. This provides a partial reconciliation of the point above.
FURTHER WORK

- Finalize experimental work on the effect of precompaction
- Understand the role of residual radial stress on the die wall on the formation of microcracks
- Develop of local risk assessment criterion for defect formation
- Scale up (from the compaction simulator to the rotary press)
• Max load before breaking notably heightened given a precompaction relative density of .6250
• MicroCT images show no visible defects in those samples
• Some error may arise from separating tablets from carbon tape post-MicroCT scan